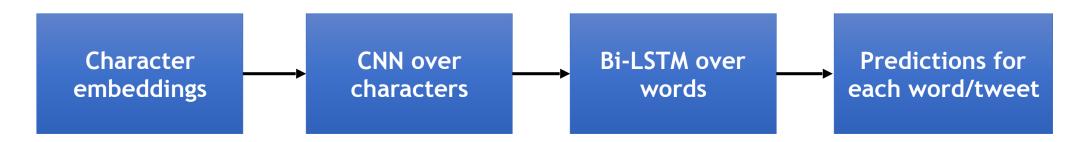
A Neural Model for Language Identification in Code-Switched Tweets

Aaron Jaech, George Mulcaire, Shobhit Hathi, Mari Ostendorf, Noah A. Smith

This talk in a nutshell

- Continuous-space (neural) representations
- Hierarchical approach for multiple kinds of context
 - Char n-grams should be interpreted in the context of a word
 - Words should be interpreted in the context of their neighbors
- Tweet-level langid for similar languages and many languages
- Good performance for Spanish/English code-switching



Standard language ID approaches

- Classifiers over character n-grams and word dictionary features
- Character n-grams are highly informative... but limited

Quien entiende nuestro clima? Qieen entiende a los adultos...

• Want to reason about a broader notion of similarity

Continuous representations for language

- Continuous space representations (neural networks) have led to progress in language modeling, machine translation, and other tasks
- Key advantages vs n-gram models:
 - Share information over longer time ranges (recurrent neural net)
 - Soft parameter tying
- Our main contribution: use the advantages of continuous space representations in the task of language identification

Why is a CNN like an n-gram model...

- Each filter in a convolutional neural network sees a fixed-width character sequence
- Filters act like linear classifiers indicating the presence or absence of a generalized n-gram
- Max-pooling creates fixed size representation for each word

...but different?

- Sharing information between similar characters and patterns
- Incorporating wider context into a single feature vector

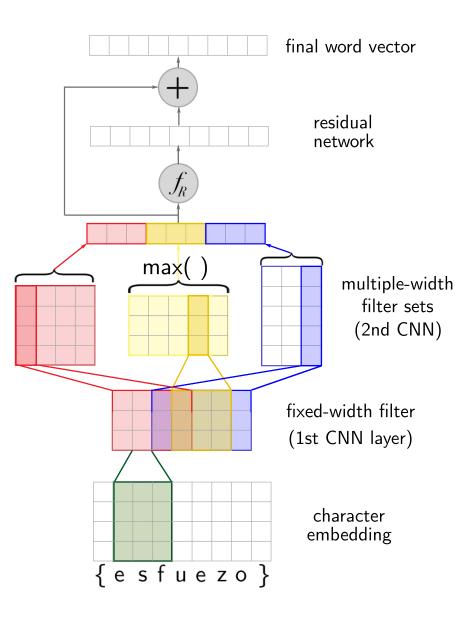
Convolutional network example

Input Sequence:	<\$>	Y	0	U	R	S		Pooled Vector
Filter 1 Output:	Χ	X	\checkmark	Χ	Χ	Χ	X	\checkmark
Filter 2 Output:	Χ	Χ	X	X	Χ	\checkmark	Χ	\checkmark
Filter 3 Output:	X	X	X	Χ	Χ	Χ	Χ	X

- Each filter sees three characters at a time (WIDTH = 3)
- Hypothetical example:
 - Filter 1 detects "YOU" trigram
 - Filter 2 detects words ending in "S"
 - Filter 3 detects "ING" trigram
- Pooled vector indicates presence of pattern in the input word

Char2Vec

- Embeds each space-delimited word
- Multiple width filters (from 3 to 6) capture different length patterns
- Residual network allows feature interactions
- RELU used as an activation function



Are word representations enough? (no)

hello

notdobbyjones

thanks a lot breakfast

• Similar patterns can be misleading

Cansino Royal

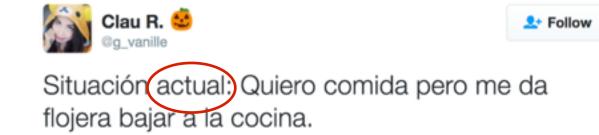
Es que a esta edad son como esponjas
¡Que dejes de lavar el coche con el niño!

• Exact matches across languages

2+ Follow

Eollow

can anyone tell me why cookie dough tastes better than the actual cookies sometimes



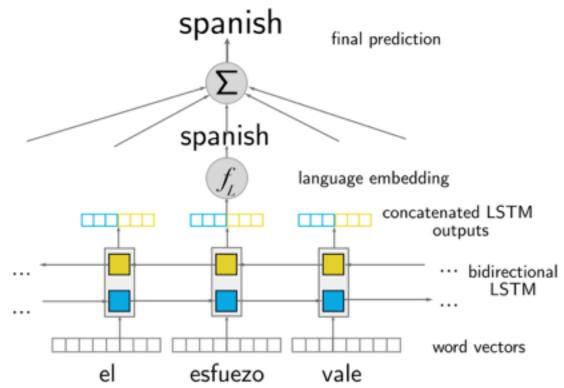
i just woke up to the worst stomach ache.

- Placing words in context is nontrivial:
 - "que dolor, actual worst headache"

👤 Follow

Tweet level context

- Take as input the sequence of word vectors from Char2Vec
- Process with a bi-directional LSTM
 - LSTM input gates minimize the effect of URLs and usernames
- Make predictions for each word
- Final prediction is average of words' labels



• We call this method C2V2L (character to vector to language)

Development datasets

Two hand-labeled Twitter datasets:

- Twitter70 covers 70 languages from five language families
- TweetLID is a small set of confusable Iberian languages plus English with some ambiguous Tweets and some code-switching
- Tweet-level supervision

	Twitter70	TweetLID		
Tweets	58,182	14,991		
Character vocab	5,796	956		
Languages	70	6		
Code-switching?	Not Labeled	Yes		
Balanced?	Roughly	No		

Baseline models

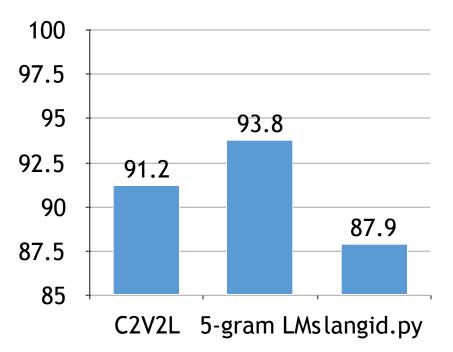
- N-gram language models:
 - Train a separate character 5-gram language model for each language
 - Each LM estimates P(TEXT|LANGUAGE)
 - Pick the label that has the highest posterior probability
 - argmax P(TEXT|LANGUAGE) P(LANGUAGE)
 - Special threshold used for the unknown language label
- Convolutional Model Baseline (C2L):
 - Treat entire tweet as a single character sequence
- Published baseline: langid.py (Lui and Baldwin, 2012)
 - Popular open source classifier that uses character n-gram features

Twitter70 results

Training Examples	Languages			
0-200	Oriya			
200-400	Uighur, Lithuanian			
400-600	Danish, Amharic, Tibetan, Korean, Basque, Chinese, Ukrainian, Tagalog			
600-800	Romanian, Turkish, Marathi, Catalan, Taiwanese, Haitian, Icelandic, Malayalam, Serbian, Sinhala, Kannada, Kurdish, Urdu, Hungarian, Punjabi, Cambodian, Latvian, Lao			
800-1000	Polish, Japanese, Hindi-Latin, Finnish, Tamil, Burmese, Dutch, English, Bengali, Russian, Georgian, Portuguese, Pashto, Vietnamese, Gujarati, Slovak, Italian, Telugu, French, Estonian, Divehi			
1000-1200	Persian, Nepali, Greek, German, Arabic, Bulgarian, Swedish, Armenian, Norwegian, Czech, Spanish, Slovene, Indonesian, Bosnian, Welsh, Thai, Croatian			
1200+	Hebrew, Hindi, Sindhi			

• Limited by performance on most difficult language pairs

• Croatian/Bosnian, Danish/Norwegian



Twitter70 Results

TweetLID results

- Our model beats N-gram baseline and langid.py
- Previous state of the art on this dataset is 75.3 F1 (Gamallo et al., 2014)
- Hierarchical model is substantially better than non-hierarchical neural network (C2L)

Model	Avg. F1	eng	spa	cat	eus	por	glg	und	amb
N-gram LM	75.0	74.8	94.2	82.7	74.8	93.4	49.5	38.9	87.0
Langid.py	68.9	65.9	92.0	72.9	70.6	89.8	52.7	18.8	83.8
C2L	72.7	73.0	93.8	82.6	75.7	89.4	57.0	18.0	92.1
C2V2L	76.2	75.6	94.7	85.3	82.7	91.0	58.5	27.2	94.5

Adding outside data

- Surprisingly, most participants in TweetLID workshop did worse in unconstrained track
- 25,000 Wikipedia sentence fragments per language
- Train model on weighted mixture of wiki and tweets
- Use it to initialize a second model that is fine tuned on just tweets
- N-gram baseline is interpolated between wiki LM and Twitter LM

Ring homomorphism

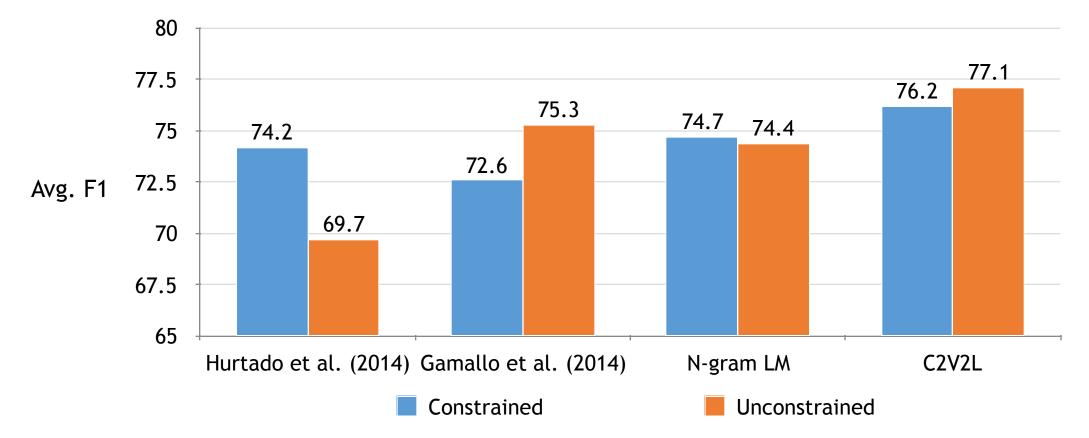
From Wikipedia, the free encyclopedia

In ring theory or abstract algebra, a ring homomorphism is a function between two rings which respects the structure.

i dont lovvvvve u anymoooooreee

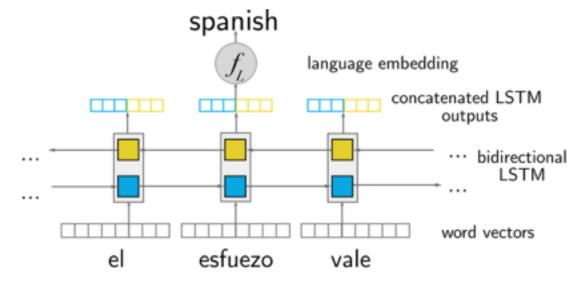
Added data results

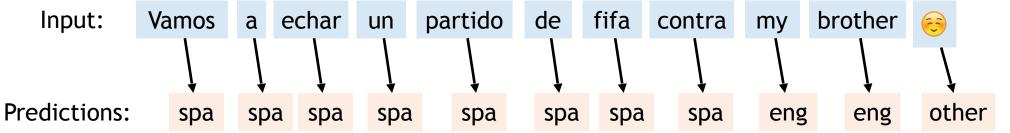
- C2V2L beats previous record (Gamallo et al., 2014) for using outside data
- Ability to leverage wiki data is an advantage of our C2V2L model



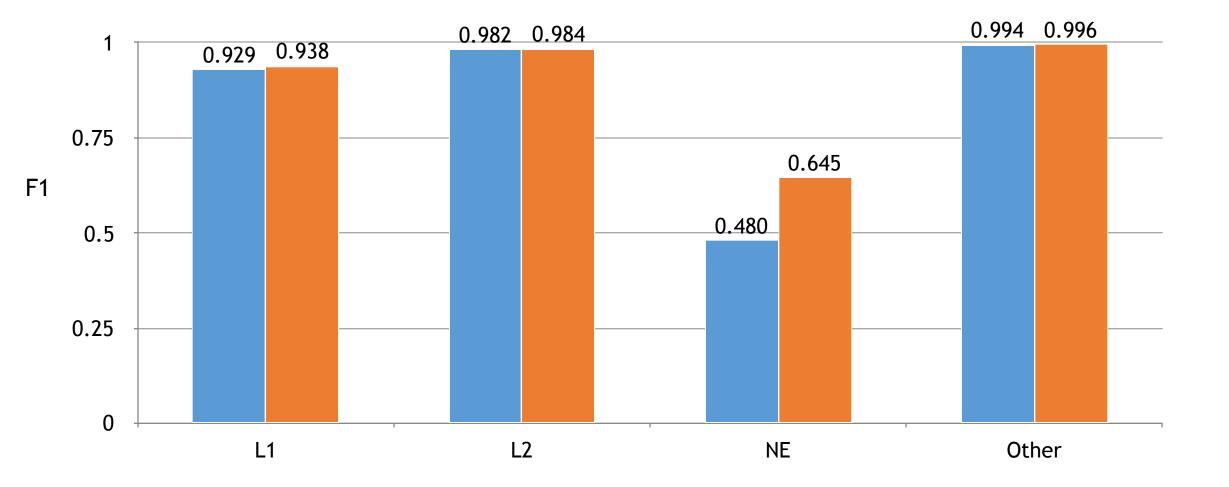
Code-switching

- Our model is easily adapted to predict code-switching
- Just remove the last layer (tweet level prediction averaging)





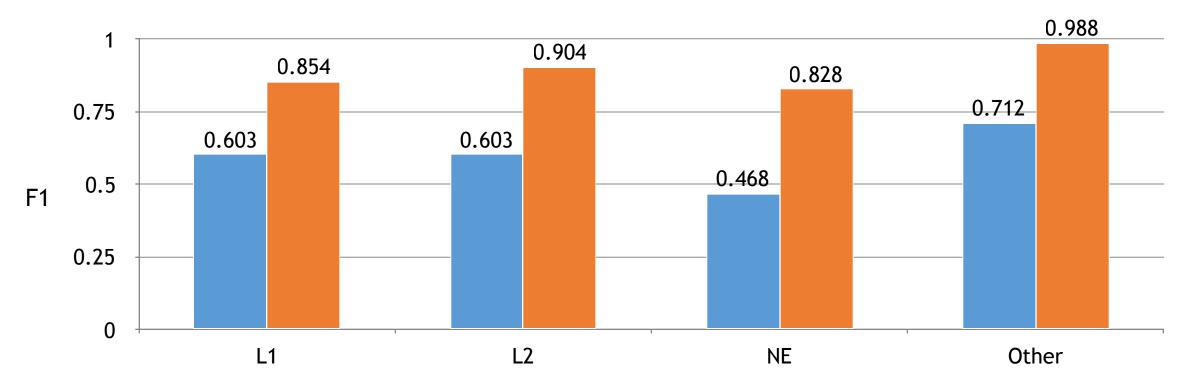
Shared task results: Spa-Eng



Best other

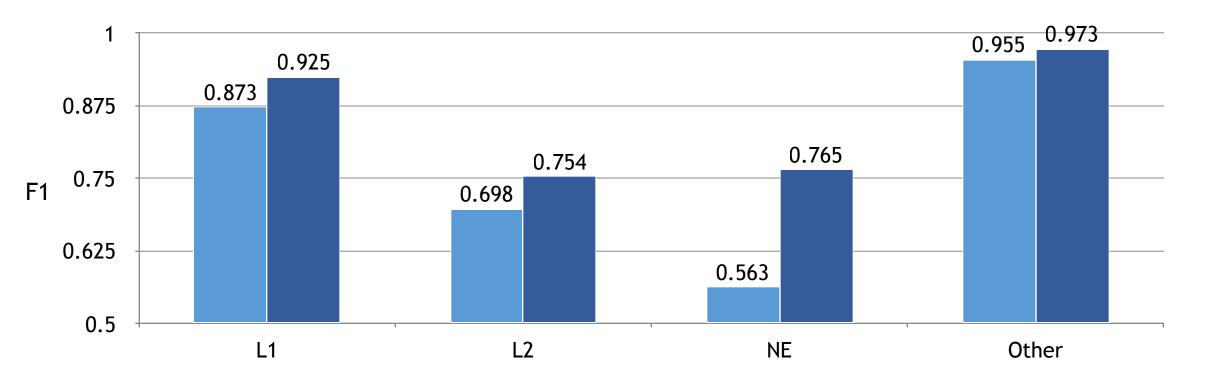
Ours

Shared task results: Arabic



 Poor results for Modern Standard Arabic / Dialectical Arabic – but based only on Spanish-English hyperparameters

Hyperparameter tuning helps! Old (Sp-En) New (MSA-DA)



• Arabic-specific hyperparameters show improvement over the Spanish-English hyperparameters (in dev set comparison)

Error analysis — examples

• "Oversharing" between words

Named entities

Error analysis — examples

Ambiguous and unknown words

Phill E.CheeseSteak @arianaasalgado

2+ Follow

I take naps serious ...digo 15 mins, me le anto 3 horas despues-.- #always

Phill E.CheeseSteak @arianaasalgado

Confusing Spanish and English

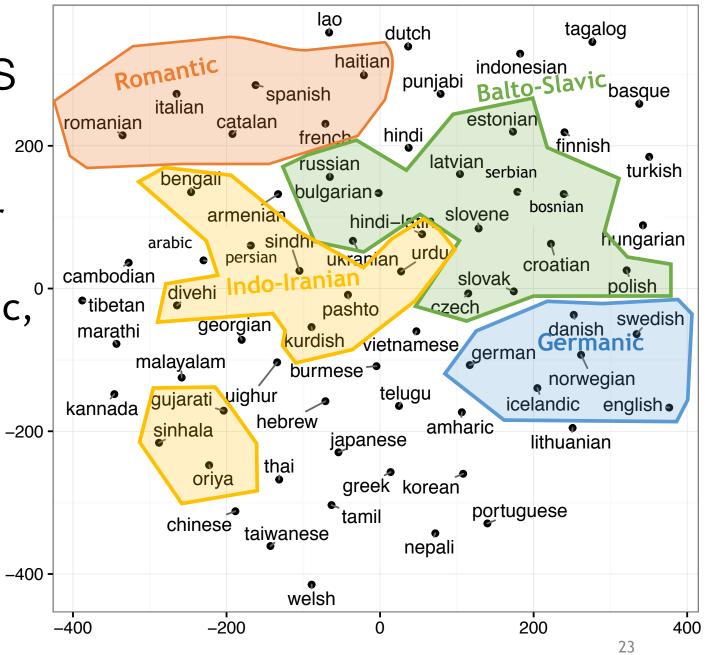
Similar words

- Char2Vec can deal with out of vocabulary words
- Learns to ignore punctuation and capitalization
- Handles non-standard tokens like usernames and hashtags

couldn't		@maria_sanch	noite		
can't	0.84	<pre>@Ainhooa_Sanchez</pre>	0.85	Noite	0.99
don't	0.80	@Ronal2Sanchez	0.71	noite.	0.98
ain't	0.80	@maria_lsantos	0.68	noite?	0.98
don't	0.79	@jordi_sanchez	0.66	noite	0.96
didn't	0.79	@marialouca?	0.66	noite,	0.95
Can't	0.78	<pre>@mariona_g9</pre>	0.65	noitee	0.92
first	0.77	@mario_casas_	0.65	noiteee	0.90

Language vectors

- Related languages often appear next to each other in the T-SNE embedding
- Orthographic, not phonetic, similarity



Conclusions

- Neural/continuous models have a few advantages including ability to leverage outside data, integration with later stages
- Hierarchical representation is key
- Performance of the model should continue to improve as more training data becomes available
- Simple approach

Future directions

- Joint segmentation and language ID
- Supplement code-switching data with tweet-level supervision
- Other tagging tasks (with joint language ID?)
- Additional features: lexicons, POS, etc.

Links:

- TweetLID: http://komunitatea.elhuyar.eus/tweetlid/
- "Twitter70": <u>https://blog.twitter.com/2015/evaluating-</u> <u>language-identification-performance</u> ("recall oriented")
- Our paper on ArXiv: https://arxiv.org/abs/1608.03030
- Contact: <u>gmulc@cs.washington.edu</u>

Thank you!