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Code-switching

Linguistic Background

@ speakers switch from one language or dialect to another
within the same context [Bullock and Toribio, 2009]

@ Three types of codes-switching: inter-sentential,
Intra-sentential, intra-word

Constraints on Code-switching

@ equivalence constraint [Poplack 1980]
@ The Matrix Language-Frame (MLF)[Myers-Scotton 1993]

e Matrix language (ML)
e The embedded language (EL)
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Introduction Road Map Code-switching Dataset

Shared Task Dataset

MSA-Egyptian Data

all training dev test
tweets | 11,241 8,862 1,117 1,262
tokens | 227,329 185,928 20,688 20,713

Table: MSA-Egyptian Data statistics

v

Spanish-English Data

all training dev  test
tweets| 21,036 8,733 1,587 10,716
tokens | 294,261 139,539 33,276 121,446

Table: Spanish-English Data statistics

N
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Introduction Road Map Code-switching Dataset

Corpora

Arabic Corpus

genre tokens

Facebook posts 8,241,244
Tweets 2,813,016

News comments| 95,241,480
MSA news texts | 276,965,735
total | 383,261,475

Table: Arabic corpus statistics

v

Spanish-English Corpus

e English gigaword corpus(Graff et al.,2003)

@ Spanish gigaword corpus (Graff ,2006)

N
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Introduction Road Map Code-switching Dataset

Data preprocessing

Data preprocessing

@ mapping Arabic scripts to SafeBuckwalter
conversion of all Persian numbers to Arabic numbers
conversion of Arabic punctuation to Latin punctuation

remove kashida (elongation character) and vowel marks

separate punctuation marks from words
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@ Recurrent Neural Network
@ Long short-term memory network
@ Word Embeddings
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Neural network RNN LSTM Word Embeddings

Reccurent Neural Network
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Figure by Christopher Olah

RNN
Given input sequence:Xxi, X2, ..., Xp
a standard RNN computes the output vector y; of each

word X
ht = H( WXhXt aF Whhh_]_ aF bh)
Yt = Yh, + by
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Long-term dependencies

RNN LSTM Word Embeddings
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Figure by Christopher Olah

@ Problem learning long-term dependencies in the data
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@ Problem learning long-term dependencies in the data

@ Vanishing gradients
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Neural network RNN LSTM Word Embeddings

Long-term dependencies

?g
A A=A -] A]
L

T
§

® @
f f
A A
& &

Figure by Christopher Olah

@ Problem learning long-term dependencies in the data

@ Vanishing gradients

@ exploding gradients
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Neural network RNN LSTM Word Embeddings

Long short-term memory network
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Figure by Christopher Olah

LSTM Basics

fe = o(Wr.[ht—1, %] + br)

iEZ U(VV,'.[ht_l,Xt] + b,‘)

C = tanh(Wc.[ht_l,xt] + bc)
C=£.Co—1+i.C

O = O'(Wo.[ht_]_,Xt] -+ bo)

ht = o * tanh(Cy)
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Neural network RNN LSTM Word Embeddings

Vector Space Models

@ Vector space models

o Distributional hypothesis: Words in the same contexts share
the same meaning
o Count-based methods (Latent Semantic Analysis,...)
o Neural probabilistic language models(Word embeddings)
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Neural network RNN LSTM Word Embeddings

@ The main component of the neural-network approach

@ Representation of each feature as a vector in a low
dimensional space

e Continuous Bag-of-Words model (CBOW) vs Skip-Gram
model
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Word Embeddings
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Figure by Yoav Goldberg
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Code-switching detection

@ System Architecture
@ Implementation Details
@ Results

@ Summary
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Approach Code-switching detection

System Architecture

LSTM-CRF for Code-switching Detection

Our neural network architecture consists of the following three
layers:

@ Input layer: comprises both character and word embeddings
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Approach Code-switching detection

System Architecture

LSTM-CRF for Code-switching Detection

Our neural network architecture consists of the following three
layers:

@ Input layer: comprises both character and word embeddings

o Hidden layer: two LSTMs map both words and character
representations to hidden sequences

@ Output layer: a Softmax or a CRF computes the probability
distribution over all labels
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Implementation Details

@ Pre-trained Word embeddings

@ Character embeddings
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Approach Code-switching detection

Implementation Details

@ Pre-trained Word embeddings

@ Character embeddings

@ Optimization: Dropout

@ Output layer: Softmax or CRF

@ Training: Stochastic gradient descent

@ optimizing Cross-entropy Objective function

@ Hyper-parameters tuning on Devset
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Results

Results on Spanish-English Dev set

Labels | CRF (feats) CRF (emb) CRF (feats+ emb) word LSTM | char LSTM char-word LSTM
ambiguous 0.00 0.02 0.00 0.00 0.00 0.00
fw 0.00 0.00 0.00 0.00 0.00 0.00

langl 0.97 0.97 0.97 0.93 0.94 0.96
lang2 0.96 0.95 0.96 0.91 0.89 0.93
mixed 0.00 0.00 0.00 0.00 0.00 0.00

ne 0.52 0.51 0.57 0.34 0.13 0.32

other 1.00 1.00 1.00 0.85 1.00 1.00

unk 0.04 0.08 0.10 0.00 0.00 0.04
Accuracy 0.961 0.960 0.963 0.896 0.923 0.954

Table: F1 score results on Spanish-English development dataset

Younes Samih T, Suraj Mahrjant Mohammed Attia®, Laura Kall  18/27



Results

Results on MSA-Egyptian Dev set

Labels | CRF (feats) CRF (emb) CRF (feats+ emb) word LSTM | char LSTM char- word LSTM
ambiguous 0.00 0.00 0.00 0.00 0.00 0.00
langl 0.80 0.88 0.88 0.86 0.57 0.88
lang2 0.83 0.91 0.91 0.92 0.23 0.92
mixed 0.00 0.00 0.00 0.00 0.00 0.00

ne 0.83 0.84 0.86 0.84 0.66 0.84

other 0.97 0.97 0.97 0.92 0.97 0.97
Accuracy 0.829 0.894 0.896 0.896 0.530 0.900

Table: F1 score results on MSA-Egyptian development dataset
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Tweet level results

Scores Es-En | MSA
Monolingual F1 0.92 | 0.890
Code-switched F1 0.88 | 0.500
Weighted F1 0.90 | 0.830

Table: Tweet level results on the test dataset.
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Results

Token level results

Label Recall | Precision | F-score
ambiguous | 0.000 0.000 0.000
fw 0.000 0.000 0.000
langl 0.922 0.939 0.930
lang2 0.978 0.982 0.980
mixed 0.000 0.000 0.000
ne 0.639 0.484 0.551
other 0.992 0.998 0.995
unk 0.120 0.019 0.034
| Accuracy | 0.967 |

Table: Token level results on Spanish-English test dataset.
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Results

Token level results

Label Recall | Precision | F-score
ambiguous | 0.000 0.000 0.000
fw 0.000 0.000 0.000
langl 0.877 0.832 0.854
lang2 0.913 0.896 0.904
mixed 0.000 0.000 0.000
ne 0.729 0.829 0.777
other 0.938 0.975 0.957
unk 0.000 0.000 0.000
| Accuracy | 0.879 |

Table: Token level results on MSA-DA test dataset.
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Char-word representation CRF Model
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MSA-Egyptian
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CRF Model

Most likely Score | Most unlikely | Score
unk = unk 1.789 | langl = mixed | -0.172
ne = ne 1.224 | mixed = langl | -0.196
fw = fw 1.180 | amb = other -0.244
langl = langl | 1.153 | ne = mixed -0.246
lang2 = lang2 | 1.099 | mixed = other | -0.254
other = other 0.827 | fw = langl -0.282
langl = ne 0.316 | ne = lang? -0.334
other = langl | 0.222 | unk = ne -0.383
lang2 = mixed | 0.216 | lang2 = langl | -0.980
langl = other | 0.191 | langl = lang2 | -0.993

Table: Most likely and unlikely transitions learned by CRF model for the
Spanish-English dataset.




Summary

@ Automatic identification of code-switching in tweets
@ A unified neural network for language identification

@ rivals state-of-the-art methods that rely on language-specific
tools




Summary

@ Automatic identification of code-switching in tweets
@ A unified neural network for language identification

@ rivals state-of-the-art methods that rely on language-specific
tools

y

What next?

@ Implement character aware Bidirectional LSTM to capture
word morphology

@ Employ the More sophisticated CNN-Bidirectional LSTM




Thank you for your attention!

Questions?
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